MCMC curve sampling and geometric conditional simulation
نویسندگان
چکیده
We present an algorithm to generate samples from probability distributions on the space of curves. Traditional curve evolution methods use gradient descent to find a local minimum of a specified energy functional. Here, we view the energy functional as a negative log probability distribution and sample from it using a Markov chain Monte Carlo (MCMC) algorithm. We define a proposal distribution by generating smooth perturbations to the normal of the curve, update the curve using level-set methods, and show how to compute the transition probabilities to ensure that we compute samples from the posterior. We demonstrate the benefits of sampling methods (such as robustness to local minima, better characterization of multi-modal distributions, and access to some measures of estimation error) on medical and geophysical applications. We then use our sampling framework to construct a novel semi-automatic segmentation approach which takes in partial user segmentations and conditionally simulates the unknown portion of the curve. This allows us to dramatically lower the estimation variance in low-SNR and ill-posed problems.
منابع مشابه
MCMC algorithms for Subset Simulation
Subset Simulation is an adaptive simulation method that efficiently solves structural reliability problems with many random variables. The method requires sampling from conditional distributions, which is achieved through Markov Chain Monte Carlo (MCMC) algorithms. This paper discusses different MCMC algorithms proposed for Subset Simulation and introduces a novel approach for MCMC sampling in ...
متن کاملSubset simulation for structural reliability sensitivity analysis
Based on two procedures for efficiently generating conditional samples, i.e. Markov chain Monte Carlo (MCMC) simulation and importance sampling (IS), two reliability sensitivity (RS) algorithms are presented. On the basis of reliability analysis of Subset simulation (Subsim), the RS of the failure probability with respect to the distribution parameter of the basic variable is transformed as a s...
متن کاملGeometric Ergodicity of Gibbs Samplers
Due to a demand for reliable methods for exploring intractable probability distributions, the popularity of Markov chain Monte Carlo (MCMC) techniques continues to grow. In any MCMC analysis, the convergence rate of the associated Markov chain is of practical and theoretical importance. A geometrically ergodic chain converges to its target distribution at a geometric rate. In this dissertation,...
متن کاملFast Communication Conditional Path Sampling of Sdes and the Langevin Mcmc Method
We introduce a stochastic PDE based approach to sampling paths of SDEs, conditional on observations. The SPDEs are derived by generalising the Langevin MCMC method to infinite dimensions. Various applications are described, including sampling paths subject to two end-point conditions (bridges) and nonlinear filter/smoothers.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008